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Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject
to the constraint that every occupied bond must have at least k−1 neighboring occupied bonds, i.e., k-core
diluted. In the classical case, we find the onset of conduction for k=2 is continuous while for k=3, the onset
of conduction is discontinuous with the geometric random first-order phase transition driving the conduction
transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3 that the
random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to
a new universality class of Anderson localization transitions.
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I. INTRODUCTION

Theoretical study of the interplay between uncorrelated
disorder and quantum mechanics began with the seminal
work of Anderson more than 50 years ago.1 Anderson pre-
dicted the existence of spatially localized single-particle
states provided there is sufficient disorder in the potential.
This finding identified the possibility of a phase transition
from conducting �extended states� to insulating �localized
states� with increasing variance in the distribution of disor-
der. The nature of the metal-insulator transition eventually
became more transparent with the introduction of the phe-
nomenological one-parameter scaling theory of localization2

based on ideas developed by Wegner3 and Thouless.4 The
scaling theory was subsequently fortified by a nonlinear
sigma field theory and a perturbation theory near two dimen-
sions allowing for calculation of the set of exponents char-
acterizing the continuous Anderson localization transition.5–7

There exists another approach to studying the interplay
between quantum mechanics and disorder via the model of
quantum site percolation.8 Consider a binary alloy where the
potential landscape is represented by two different energies
randomly distributed throughout the system with probabili-
ties p and 1− p, respectively. In the limit where the energy
difference approaches infinity, the quantum particle can only
access �hop to� one of the two types of atoms. These ran-
domly distributed accessible sites may or not span the system
and, hence, affect the quantum conduction. If the accessible
sites do not span the system then surely the system is insu-
lating, for example.

Some controversy surrounds the study of quantum perco-
lation. For instance, some have argued that quantum-
percolation transition in the same universality class as the
Anderson transition.9,10 However, others have found evi-
dence for a transition in two dimensions,11–14 contrary to the
scaling theory. For example, invoking an ansatz put forth by
Daboul et al.11,12 based on a low-concentration series for the
average transmission coefficient, Nakanishi and Islam have
numerically calculated the transmission coefficient of a
quantum particle through a two-dimensional percolation net-
work as a function of energy and disorder. Their study dem-
onstrated a transition from exponentially localized states to
extended states with a power-law localized regime as

well.13,14 Schubert and Fehske15,16 have calculated the local-
density states for a two-dimensional percolation network and
found some similarities with three-dimensional systems,
therefore, suggesting the possibility of a two-dimensional lo-
calization transition though need for further study was em-
phasized. One issue that appears to be resolved to some ex-
tent in three dimensions is the observation that pq� pc,
where pc signals the onset of the geometric percolation tran-
sition and pq signals the onset of extended single-particle
wave functions.

The Anderson model and quantum percolation have been
analyzed on the Bethe lattice.17–20 The loopless structure of
the Bethe lattice makes it amenable for analytic study, hence,
it will be implemented here. For instance, Abou-Chacra et
al.17 were able to obtain closed-form expression for the
breakdown of localized states in terms of the value of the
potential, the width of the disorder, and the coordination
number of the lattice. Harris19,20 analyzed a bond version of
quantum percolation and found that the exponent associated
with the divergence of the average finite cluster size as the
transition is approached from below is the same as classical
percolation but with pq� pc.

Traditionally, the Anderson model and quantum percola-
tion are models of quantum transport with short-ranged, un-
correlated disorder. More recently, eigenfunction studies of
power-law diluted chains have been conducted.21 More spe-
cifically, the hopping probability of an occupied bond scales
with, r, the distance along the chain, as 1 /r1+�. As � is de-
creased below 0.68, extended states emerge presumably due
to the fact that the system is becoming mean fieldlike such
that this result is not contrary to the scaling theory of local-
ization.

How is the Anderson transition or the quantum-
percolation transition affected by other types of disorder—
for example, correlated disorder where the correlations arise
via local constraints on the occupation of bonds? The sim-
plest model of correlated percolation is k-core bond percola-
tion where every occupied bond must have at least k−1 oc-
cupied neighboring bonds.22–26 To enforce this constraint,
bonds are initially occupied independently and at random
with probability p. Then, those occupied bonds with less than
k−1 occupied neighboring bonds are rendered unoccupied.
This removal procedure proceeds recursively throughout the
lattice until all occupied bonds satisfy the k-core constraint.
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Please see Fig. 1 for an example on the Bethe lattice.
As for the k-core percolation transition, in mean field, for

k�3, the fraction of occupied bonds in the spanning cluster,
P�, is finite at the transition. This result is to be contrasted
with k�3, where the fraction of occupied bonds is zero at
the transition. While the k�3 transition is discontinuous in
terms of the order parameter, P�, there exists at least two
diverging length scales exhibiting evidence of a random first-
order phase transition.24 Therefore, the k�3 represents a
new universality class differing from the ordinary, uncorre-
lated percolation model.

Given this new universality class in the geometric perco-
lation transition from disconnected to connected due to con-
straints on the disorder, let us return to the theme of the
interplay between disorder and quantum mechanics. How
does the random first-order phase transition in the geometry
affect the onset of quantum conduction? Could the discon-
tinuous nature of the nature allow for pc= pq as well as allow
for the discontinuous onset of conduction, providing evi-
dence for a new universality class in quantum localization
transitions?

We will provide an answer to this question via analysis of
quantum conduction on a k-core diluted Bethe lattice. Before
doing so, we present results of classical conduction on a
k-core diluted Bethe lattice since we will implement some
the machinery in the quantum limit as well. Note that the k
=1 case has been analyzed previously by Stinchcombe27 and
Kogut28 has analyzed a site version of the k=3 case. There-
fore, the paper is organized as follows: Sec. II provides the
classical analysis, Sec. III provides the quantum analysis us-
ing Landauer conduction, and Sec. IV discusses the implica-
tions of our results.

II. CLASSICAL k-CORE CONDUCTION

A. Geometry of k-core clusters

Consider a seed vertex from which a lattice with coordi-
nation number z and N generations emerges. Each generation

is constructed by recursively adding z−1 bonds to an mth
generation site forbidding the formation of loops to produce
a rooted Bethe lattice. Consider the missing z bond of the
seed site to survive the k-core removal process as specified in
Sec. I. Then the entire connected cluster of occupied bonds,
each occupied with probability p, will survive the k-core
removal procedure if each occupied bond in the mth genera-
tion has k−1 occupied neighbors bonds in the �m+1�th gen-
eration. To determine the percolation properties of such geo-
metrical structures, we define R, the probability that an
arbitrarily chosen branch leaving a given site is not in an
infinite k-core cluster with

R = 1 − p + p�
n=0

k−2 �z − 1

n
�Rz−1−n�1 − R�n. �1�

The arbitrarily chosen branch is not part of an infinite k-core
cluster if �a� the bond is not occupied or �b� the bond is
occupied but less than k−1 of its neighboring bonds are oc-
cupied. For k=2, the equation for R reduces to the ordinary
bond percolation problem with R decreasing continuously
from unity just above the transition. In particular, for z=3
with p− pc=��1 �with pc= 1

2 �,

R = �1 if � � 0

1

pc + �
− 1 =

1

1/2 + �
− 1 � 1 − 4� if � � 0.� �2�

For k�3, however, R jumps discontinuously from unity at
the transition such that k�3 represents a different universal-
ity class from ordinary percolation. For example, for k=3,
z=4,

R = 	1 if � � 0

Rc − R0�1/2 if � � 0,

 �3�

where pc= 8
9 , Rc= 1

4 , and R0= 9�2
16 .

B. Classical conduction formulas

Each occupied bond denotes a conductor with conductiv-
ity 	0�0 while each unoccupied bond denotes a conductor
with zero conductivity. The probability of an arbitrarily cho-
sen branch leaving a given site having a conductivity 	 is
given by

P�	� = R
�	� + �1 − R�H�	� , �4�

where

H�	� = p �
n=k−1

z−1 �z − 1

n
��1

− R�n−1Rz−1−n� d	1 ¯ d	nH�	1� ¯ H�	n�
�	 − Sn�

�5�

with

Sn =
	0Tn

	0 + Tn
�6�

and

a

12

3

FIG. 1. Here k=3 and z=4. The shaded circles denote branches
that are k−1 connected to infinity. The removal of bonds 1 and 2
eventually triggers removal of bond 3 and bonds emanating from
vertex a, including the shaded circles. The remaining three branches
emanating from the center site survive the removal process.
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Tn = �
i=1

n

	i. �7�

Note that Sn assumes that the bond starting off the arbitrarily
chosen branch is occupied. We have also invoked the self-
similarity of the Bethe lattice such that H�	� is equivalent
from one generation to the next.

Once H�	� is determined for an arbitrarily chosen branch,
the microscopic conductivity distribution for the system can
be computed via

��	� = �
n=0

k−1 �z

n
��1 − R�nRz−n
�	� + �

n=k

z �z

n
�

��1 − R�nRz−n� d	1 ¯ d	nH�	1� ¯ H�	n�
�	 − Tn� .

�8�

The first term represents those realizations where the k-core
criterion is not met for the z branches and the second for
those realizations otherwise. We note that P�	� is normalized
as is H�	� and ��	�. Finally, the average microscopic con-
ductivity of system, 	�, is given by

	� =� d		��	� . �9�

C. k=2, z=3 case

We first compute H�	� determined by

H�	� = 2pR� d	1H�	1�
�	 − S1� + p�1

− R�� d	1d	2H�	1�H�	2�
�	 − S2� �10�

with R given by Eq. �2�. One expects the onset of nonzero
average conduction to occur at pc, the occupation probability
above which there exists a spanning cluster with probability
unity. Since the geometric transition is continuous, we expect
that the conduction transition is also continuous. Therefore,
we propose the ansatz,

H�	� =
1

�H̄� 	

�� . �11�

We set =1. Inserting this ansatz into Eq. �10� yields

H̄�	� = 2�� +
1

2
��1 − 4��� d	1H̄�	1

�
�
�	 −

	1	0

	1 + 	0
�

+ �� +
1

2
�4�� d	1d	2H̄�	1

�
�H̄�	2

�
�

�
�	 −
�	1 + 	2�	0

	1 + 	2 + 	0
� . �12�

We let 	
� =x and

	i

� =xi for i=1,2, multiply both sides by
exp�−sx�, and integrate over x from zero to infinity to arrive
at

H�s� = 2�� +
1

2
��1 − 4��� dx1H̄�x1�exp�−

sx1

1 +
�x1

	0
�

+ �� +
1

2
�4�� dx1dx2H̄�x1�H̄�x2�

�exp�−
s�x1 + x2�

1 +
�

	0
�x1 + x2�� , �13�

where H�s� is the Laplace transform of H̄�x�.
Expanding in powers of � and collecting terms, the zeroth

term in � yields the identity

H�s� =� dx1H̄�x1�exp�− sx1� . �14�

The first-order term yields

0 = − 2� dx1H̄�x1�exp�− sx1� +
s

	0
� dx1x1

2H̄�x1�exp�− sx1�

+ 2� dx1dx2H̄�x1�H̄�x2�exp�− s�x1 + x2�� , �15�

leading to the differential equation,

H��s� = 2
	0

s
H�s��1 − H�s�� . �16�

As for the two boundary conditions, the normalization on H̄
translates to H�0�=1. We also choose H���=0. We solve
this system of equations numerically using Mathematica.29 A
result is shown in Fig. 2. The large s behavior is determined
by H��s�=2

	0

s H�s� with H�s��exp�−2�2 /	0s1/2�. We note
that the same form of the differential equation emerged from
the analysis by Stinchcombe27 to second order in �. �See also
similar analysis by Heinrichs and Kumar.30�

The above analysis justifies the ansatz for H�	� for �
�1. Inserting the ansatz into the expression for 	� to deter-
mine the scaling of 	� with � yields

0 2 4 6 8
s

0

0.2

0.4

0.6

0.8

1

H
(s

)

FIG. 2. H�s� for 	0=1 /2.
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	� = 96� dxxH̄�x��3 + O��4� . �17�

This result is to be contrasted with the result for k=1 ana-
lyzed by Stinchcombe27 where quadratic scaling with � was
computed. This difference is due to the fact that while the
expression for R is equivalent for k=1 and k=2, the fraction
of bonds participating in the infinite cluster, P�, scales dif-
ferently with � for k=1 and k=2. For k=1, P��� while for
k=2, P���2 such that the conductivity should scale with �
as above. This scaling holds for larger z as well. We note that
the k=2 case is equivalent to biconnected percolation studied
by Harris.31 Harris found that the exponent for jth connect-
edness is given by j�, where �=1 is the order-parameter
exponent for ordinary percolation. Presumably, the conduc-
tivity exponent generalizes to j�+1 in the jth-connected
case, which is different from k core in that there is no culling
process.

D. k=3, z=4 case

The equation for H�	� now reads

H�	� = 3pR�1 − R�� d	1d	2H�	1�H�	2�
�	 − S2�

+ p�1 − R�2� d	1d	2d	3H�	1�H�	2�H�	3�
�	 − S3� ,

�18�

where R is now given by Eq. �3�. Since there is a jump in R
at the transition for this value of k, one expects the transition
in the conductivity to be discontinuous as well. We propose
the following scaling form for H�	�:

H�	� = 	0 if � � 0

Hc�	� + ��K�	� if � � 0.

 �19�

The normalization on H�	� implies �d	Hc�	�=1 and
�d	K�	�=0.

Using Eq. �19� and expanding in �, we arrive at

Hc�	� =
1

2
�� d	1d	2Hc�	1�Hc�	2�
�	 − S2�

+� d	1d	2d	3Hc�	1�Hc�	2�Hc�	3�
�	 − S3��
�20�

for the � independent terms. If ��1 /2, then the terms of
order �1/2 yield

Hc�	� =� d	1d	2Hc�	1�Hc�	2�
�	 − S2� , �21�

Hc�	� =� d	1d	2d	3Hc�	1�Hc�	2�Hc�	3�
�	 − S3� .

�22�

Equation �21� yields solutions, Hc�	�=0,
�	� or 
�	−
	0

2 �.
The last solution is the only one allowed given the construc-

tion of Hc�	�, however, this solution conflicts with the solu-
tion Hc�	�=
�	− 2

3	0� from Eq. �22�. So, ��
1
2 . If ��

1
2 , the

terms of order �� imply

K�	� =� d	1d	2Hc�	1�K�	2�
�	 − S2�

+
3

2
� d	1d	2d	3Hc�	1�Hc�	2�K�	3�
�	 − S3� .

�23�

However, the linear integral equation for K�	� dictates that
K�	� can be arbitrarily rescaled by a factor. Since any physi-
cal solution should be unique, K�	�=0 is the only solution.
Therefore, we rule out ��

1
2 . This leaves �= 1

2 . Then the
terms of order �1/2 are

K�	� =� d	1d	2Hc�	1��K�	2� − �3�2/4�Hc�	2��
�	 − S2�

+� d	1d	2d	3Hc�	1�Hc�	2���3�2/4�Hc�	3�

+ �3/2�K�	3��
�	 − S3� . �24�

To justify the above ansatz, we must find nontrivial solu-
tions for Eqs. �20� and �23� with �= 1

2 . We do so numerically
by making an initial guess for Hc�	� and K�	� and solving
the integral equations iteratively until both equations are sat-
isfied within some tolerance. This algorithm is first imple-
mented for Hc�	� and then that numerical solution is used to
solve for K�	�. For the rest of the classical numerical analy-
sis, we set 	0=1. The initial guesses used are Hc�	�=
�	
−0.6� and K�	�=
�	−0.6�−
�	−0.3�. The domain is bro-
ken up into bins such that after integration, each bin being
reassigned the maximum weight.

We plot the results for Hc�	� and K�	� with bin size
0.0025 in Fig. 3. Both solutions obey their respective con-
straints thereby justifying the initial ansatz. Using these nu-
merical results we can also compute the average microscopic
conductivity of the system near the transition. More pre-
cisely,

	� = c1 + c2�1/2 �25�

with c1=0.988 and c2=1.945. Note that the maximum con-
ductivity of the system is 8

3 in the fully occupied case.
Monotone sequences. From Fig. 3, the domain of Hc�	�

appears to bounded away from zero and from the maximum
value of 8/3. As a check on our numerics, we determine these
bounds with the following argument. Expanding Hc�	� as a
sum of delta functions,

Hc�	� = �
i

Ai
�	 − ai� 0 � Ai � 1, 0 � ai �
8

3
,

�26�

and iterating Eq. �20� n times yields the sequence,
an,1 ,an,2 ,an,3 , . . ., which is arranged from largest to smallest.
The �n+1�th iteration yields the sequence,
an+1,1 ,an+1,2 ,an+1,3 , . . .
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To determine the largest value of the ai after the �n
+1�th iteration, assume an,1�an,u such that

an,1 + an,u

1 + an,1 + an,u
= 1 −

1

an,1 + an,u

�1 −
1

an,1 + an,1

=
2an,1

1 + 2an,1
. �27�

We also have

3an,1

1 + 3an,1
= 1 −

1

3an,1 + 1

�1 −
1

2an,1 + 1

=
2an,1

1 + 2an,1
. �28�

So the largest value of ai after the �n+1�th iteration is
3an,1

1+3an,1
.

Focusing on the largest values of each iteration, we form the
sequence Q with

Q = �a1,1,a2,1,a3,1, . . . ,an,1,an+1,1, . . .�

=�a1,1, f�a1,1�, f�f�a1,1��, . . . , f �n−1��a1,1�, f �n��a1,1�, . . .� .

Since an,1� f�an,1�=an+1,1=
3an,1

1+an,1
, an,1, sequence Q is a

monotonic decreasing sequence with a lower boundary of 0.
Therefore, sequence Q converges to a finite limit, A, deter-
mined by

A = f�A� =
3A

1 + 3A

with A=2 /3. Therefore, sequence Q converges to 2/3 with
the largest value of ai=2 /3.

To obtain a lower bound on ai, we construct another se-
quence,

Q� = �a1,1� ,g�a1,1� �, . . . ,g�n−1��a1,1� �,g�n��a1,1� �, . . .� , �29�

where an,1� is the smallest number after each iteration and

g�x�= 2x
1+2x . Since an,1� �g�an,1� �=

2an,1�

1+2an,1�
, sequence Q� is a

monotonically increasing sequence with a boundary of unity
so that the sequence approaches a finite limit, A�, with

A� = g�A�� =
2A�

2A� + 1

such that A�=1 /2. Therefore, sequence Q� converges to 1/2,
i.e., the smallest value of ai is 1/2.

Consequently, the ai’s are confined between 1/2 and 2/3
for Hc�	� as demonstrated in the numerical analysis. One can
also extend this analysis to Kogut’s k=3 site percolation
analysis to demonstrate that the upper and lower bounds on
ai are 1/2 and 1/3, respectively. �In the site formulation of the
problem, occupied sites are surrounded by half bonds with
some conductivity and unoccupied sites by half bonds of
zero conductivity.� In Fig. 4 we plot Hc�	� and K�	� for the
k=3, z=4 site percolation problem analyzed by Kogut to
demonstrate the bounds. We note that the data suggest other
gaps in the domains of these functions for the both the bond
and site problem. Such gaps could indicate a fractal struc-
ture.

III. QUANTUM k-CORE CONDUCTION

A. Quantum conduction formulas

To examine quantum k-core conduction on a dilute Bethe
lattice, we require the conduction formulas for adding quan-
tum resistors in series and in parallel. Anderson et al.2 have
derived the quantum equivalent of Ohm’s law for two quan-
tum wires in series. Their starting point is the Landauer ap-
proach to conductance, g, i.e., a scattering matrix approach.32

Consider two scatterers in series. See Fig. 5. The logarithm
of the transmission probability of the two-scatterer system is

0.5 0.55 0.6 0.65
σ

0

0.02

0.04

0.06

0.08
H

c(σ
)

0.5 0.55 0.6 0.65
σ

-0.4

-0.2

0

0.2

0.4

K
(σ

)

FIG. 3. �Color online� Left: plot of Hc�	� with bin size 0.0025 for k=3, z=4 classical bond percolation. Right: plot of K�	� for the same
conditions. Hc�	� converges after 14 iterations and K�	� after six iterations.
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ln T = ln T1 + ln T2 − ln�1 + R1R2 − �R1R2 cos��� ,

�30�

where T1= �t1�2 with t1 representing the transmission ampli-
tude for the first scatterer and  is the phase difference be-
tween the two scatterers. Assuming  is randomly distrib-
uted, averaging over the phase difference and applying
Landauer’s formula, we arrive at the conductance formula
�in dimensionless quantum units� for two scatterers in series,

�1 +
1

g
� = �1 +

1

g1
��1 +

1

g2
� , �31�

where g1 and g2 are typical conductances. In general, for n
scatterers in series,

�1 +
1

g
� = �

i=1

n �1 +
1

gi
� . �32�

As for the formula for adding quantum resistors in paral-
lel, Arovas et al.33 have demonstrated, via a redefinition of a
transfer matrix to quantify vertical propagation �as opposed
to horizontal propagation in the series case�, that the trans-
mission probability is interchanged with the reflection prob-
ability. Therefore, to

�1 + g� = �
i=1

n

�1 + gi� �33�

for n quantum resistors in parallel, again, assuming the phase
randomizes between scatterers.

In applying these formulas to the Bethe lattice, we assume
one scatterer per occupied bond. Using Eqs. �32� and �33�,
we define the quantum analogs of Sn and Tn, or Sn

q and Tn
q as

Tn
q = �

i

�1 + gi� − 1 �34�

and

Sn
q =

g0Tn

Tn + g0 + 1
, �35�

where g0 denotes the typical conductance of an individual
scatterer. Note that while there is disorder in terms of the
dilution p, there is also randomness in the individual conduc-
tances. The latter disorder is of the Anderson type while the
former is of the quantum bond percolation type.

B. Bounds on pq for k=2, z=3

We begin by assuming that the onset of quantum conduc-
tion is driven by the geometric percolation transition. In
other words, pq= pc and

Pq�g� = R
�g� + �1 − R�Hq�g� �36�

with

Hq�g� = 2pR� dg1Hq�g1�
�g − S1
q�

+ p�1 − R�� dg1dg2Hq�g1�Hq�g2�
�g − S2
q� .

�37�

If an occupied bond is connected to infinity geometrically via
occupied bonds, it is also connected to infinity quantum me-
chanically via occupied bonds. Assuming the quantum con-
duction transition is continuous just as the geometric transi-
tion, we propose

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
σ
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0.07
H

c(σ
)

0.35 0.4 0.45 0.5
σ

-0.4

-0.2

0

0.2

0.4

0.6

K
(σ

)

FIG. 4. �Color online� Left: plot of Hc�	� with bin size 0.0025 for k=3, z=4 classical site percolation. Right: plot of K�	� for the same
conditions.

2t1 r1 r2
t

FIG. 5. Two quantum scatterers in series where t1 and r1 denote
the transmission amplitude and reflection amplitude, respectively,
for the first scatterer with the incident wave coming from the left,
and t2 and r2 the transmission and reflection amplitudes for the
second. The prime denotes the incident wave coming from the right.
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Hq�g� =
1

��H̄q� g

��� . �38�

Inserting this ansatz into Eq. �37� leads to the � independent

terms: H̄q�s� and �dx1H̄q�x1�exp�−s�x1	0� / �1+	0��. Since
these expressions cannot be equated, the initial assumption
of the quantum conduction transition being driven by the
geometry is incorrect, as expected. Loosely speaking, quan-
tum interference prevents extended states in narrow chan-
nels. In other words, there are not enough occupied bonds
participating in the spanning k=2 cluster at the transition to
warrant a quantum transition. Certainly, the obvious lower
bound on pq is pc. To compute a better lower bound on pq,
one needs to calculate the quantum-mechanical version of R
with the two types of disorder.

We now analyze the fully occupied case to determine if
pq�1, i.e., if there exists a quantum conduction transition.
For the fully occupied Bethe lattice that there is a critical
value of g0 below which there is no quantum conduction
even for p=1. This critical value g0c is given by

S2
q =

g0c��1 + S2
q�2 − 1�

1 + g0c + ��1 + S2
q�2 − 1�

. �39�

For S2
q�1 near the transition �assuming it is continuous�,

g0c=1 /2. For general z, g0c=1 / �z−2�. This result agrees
with Shapiro.34

We perturb about p=1. For z=3 and p=1, g0c=1, we,
therefore, choose g0=2 as an example and eventually invoke
the expansion parameter c=1− p�1. The conductivity gb of
a perfect branch is given by

1 +
1

gb
= �1 +

1

2
��1 +

1

�1 + gb�2 − 1
� , �40�

yielding gb=1. Following Stinchcombe,27 we denote g�n� and
gb

�n� as the conductances of the branching network and of any
one of the z branches incident on the origin where one bond
has been removed from the nth shell, respectively. Note that
removing one bond from the nth shell does not initiate the
removal of other occupied bonds for k=2, z=3. For n�2,

1 + g�n� = �1 + gb�2�1 + gb
�n�� �41�

and

1 +
1

gb
�n� = �1 +

1

2
�	1 +

1

�1 + gb��1 + gb
�n−1�� − 1


 . �42�

These two equations result in

4

g�n� − 3
=

1

2
+

3

g�n−1� − 1
. �43�

Starting with an initial value of g�1�=3, this sequence con-
verges to a finite value of approximately 7. The number of
ways of removing a bond from the nth shell �n�1� is z�z
−1�n−1. Therefore, the average conductivity with a small con-
centration c of absent conductors is given by

g�c� = g�c = 0�	1 − c�
n=1

�

z�z − 1�n−1�g�c = 0� − g�n�

g�c = 0� �
 .

�44�

The sum in the above equation diverges as n→�. However,
one can always choose a small enough number c such that
c�n=1

� z�z−1�n−1� g�c=0�−g�n�

g�c=0� � remains small. Consequently,
there is quantum conduction just below p=1, provided g0 is
large enough. Therefore, pc� pq�1 for g0�g0c.

C. k=3, z=4 case

We, again, assume that the onset of quantum conduction
is driven by the geometric transition. This assumption is
more plausible for this particular value of k since the onset of
the infinite cluster is discontinuous such that one may expect
a quantum transition. More specifically, we assume Eq. �1�
pc= pq and Eq. �2�

Pq�g� = R
�g� + �1 − R�Hq�g� , �45�

where Hq�g� is dictated by the quantum version of Eq. �18�.
Assuming Hq�g� has the same scaling form as in the classical
k=3, z=4 case, we find �q=1 /2. We can also construct the
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FIG. 6. �Color online� Left: plot of Hc
q�g� with bin size 0.005 for k=3, z=4 quantum bond percolation. Right: plot of Kq�g� for the same

conditions.
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lower bound and upper bounds for the domain of Hc
q�g� us-

ing the same arguments in Sec. II and find an upper bound of
��5−1� /2 and zero as the lower bound. In Fig. 6, using the
same algorithm as in the classical case to solve the nonlinear
integral equations, we plot Hc

q�g� and Kq�g�. We find that the
average microscopic conductance is

g� = d1 + d2�1/2 �46�

with d1=1.379 and d2=4.959. For the Bethe lattice, the mi-
croscopic quantum conductivity, 	q�, is proportional to mi-
croscopic quantum conductance and so 	q� has the same
scaling with �.

The significance of this result is twofold: �1� we have
found a quantum conduction transition with pc= pq and �2�
we have found a discontinuous onset of quantum conduction
in an Anderson model with two types of disorder, one
correlated—k-core correlated—and one not. Therefore, we
have discovered a new universality class for an Anderson-
type transition with the classical random first-order phase
transition in the geometry driving the quantum transition.

IV. DISCUSSION

In summary, we studied quantum conduction on a k-core
percolating Bethe lattice with coordination number z. For k
=2, z=3, we found pc� pq�1, though for k=3, z=4, pq
= pc. Moreover, for k=3, z=4, the onset of conduction is
discontinuous, thereby representing a new universality class
of disorder-driven localization transitions. While our analysis
holds for the Bethe lattice, which is a typical mean-field
result, one would like to compare our results against another
mean-field structure, namely, the random graph. Also, since
mean-field theory is not always applicable, one would also
like to investigate quantum conduction on low-dimensional
k-core structures to determine whether or not pc= pq for k
�3 in low dimensions. This can be achieved using the nu-
merical techniques recently developed, for example, by Is-
lam and Nakanishi14 and by Shubert and Fehske.16 In three
dimensions, it is clear that pc� pq for ordinary quantum per-
colation, where the geometrical phase transition is continu-
ous. If the geometrical phase transition is discontinuous in
three dimensions due to correlations in the geometry, it may
be that pc= pq with potentially a discontinuous onset in quan-
tum conduction.

In the world of metal-insulator transitions, there are typi-
cally two effects to consider that of electron-electron inter-
actions and that of disorder. Typically, disorder-driven
�Anderson� transitions,35 in the absence of interactions, are
continuous while interaction-driven transitions in pure sys-
tems, such as the Mott-Hubbard transition,36 are discontinu-

ous. Our finding blurs this conventional wisdom in that we
have discovered a discontinuous onset in quantum conduc-
tion as a function of the k-core correlated disorder in the
absence of electron-electron interactions. Presumably, there
are other geometrical correlations to be constructed and
studied—ones that will affect the usually continuous nature
of the Anderson transition.

Can this k-core disorder be realized in an actual experi-
ment? One motivation for k-core �bootstrap� percolation is to
capture some aspect of the principle of local mechanical sta-
bility in a static, amorphous packing of jammed spheres.24

Perhaps a quantum analog of this can be realized in low-
temperature packings of metallic nanoparticles? An experi-
ment has already been conducted with a collection of silver
quantum dots sitting atop of a Langmuir monolayer at room
temperature.37 As the interparticle spacing decreases by com-
pressing the floating particles together, the electronic trans-
port goes from hopping to tunneling to ordinary metallic
transport. The authors claimed that disorder in the particle
size and in the charging energy probably does not drive the
transition and, instead, argue for a possible first-order Mott
transition at room temperature. However, in light of the
analysis of the onset of classical conduction for k=3, we
argue for a possible classical correlated percolation transi-
tion in conduction.

Finally, our system contains two types of disorder—the
k-core dilution disorder and the disorder in the individual
conductances. It would be interesting to retain only the
k-core dilution disorder to realize a k-core version of quan-
tum bond percolation. Perhaps then we would also find pc
= pq? We note that Avishai and Luck38 have analytically in-
vestigated quantum conduction on the fully occupied Bethe
lattice in the absence of site disorder. They found a band
structure in the fully occupied case that shrinks to zero as z is
increased. They did not analyze the dilute case, however.
Harris has analyzed quantum uncorrelated bond percolation
as the localization transition is approached from below by
solving the Schrodinger equation for E=0 eigenstates on fi-
nite clusters.19,20 Since no finite clusters exist for k�3 on the
Bethe lattice, a nontrivial extension of this analysis is re-
quired. Such a task, however, should be pursued to discover
other models with correlated disorder exhibiting novel metal-
insulator transitions.
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